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Some observations on Darbow's theorem, isospectral 
Hamiltonians and supersymmetry 
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Physics and Applied Mathematics Unit, Indian Statistical Institute. Calcutta-700035, India 

Received 23 lune 1994. in final form 2 September 1994 

Abstract. A method to generate isospectral supersymmetric Hamillonians is given which is 
similar but inequivalent to the usual approach based on Darboux's theorem. Explicit calculations 
are made for the potential V(rJ = -2sech'r and the conditionally exactly solvable potential 
given by V ( r )  = Ar2l3 + B / r 2 / 3  - GoJr'. 

In recent years isospectral Hamiltonians, i.e. Hamiltonians with the same eigenvalues, have 
been studied by several authors [I-SI. Among various approaches to general isospectral 
Hamiltonians, the most popular one is based on a theorem about second-order linear 
differential equations first discussed by Darboux [6] over a century ago. 

Abraham and Moses [I] have developed a formalism to generate isospectral 
Hamiltonians based on the Gel'fand-Levitan equation [7]. Luban and Pursey [Z] showed 
that the approach proposed by Abraham and Moses and the one based on Darboux's theorem 
are inequivalent. Recently Schnizer and Leeb 181 have generalized Darboux transformations 
to find exactly solvable Schrodinger equations. Supersymmetric quantum mechanics [9-131 
(SSQM) which has been the subject of much attention over the past decade or so provides 
another approach which gives two isospectral Hamiltonians which are called the bosonic 
and fermionic parts of the supersymmetric system. 

In this paper we show that the usual Darboux theorem when applied to a supersymmetric 
Hamiltonian leads to its supersymmetric partner which is isospectral with the original 
Hamiltonian; that repeated application of Darboux's theorem does not give any more 
isospectral supersymmetric Hamiltonians. However, it is shown that a modified approach 
can generate a series of exactly solvable supersymmetric Hamiltonians if one is given 
a single exactly solvable supersymmetric Hamiltonian. The Hamiltonians are different 
from those obtained by Schnizer and Leeb [8]. Before we discuss the connection between 
Darboux's theorem and supersymmehy let us briefly present the essential details of ssQM. 

The Hamiltonian of SSQM is given by 

where the W satisfy the anticommutation relation 

{Y*, W} = 1. (2) 

t Also at: Physics Department, Barasat Government College, Bansat. West Bengal, India. 
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One can use 
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The form of Y and Y' given in (3) indicates that H given in (1) is a 2 x 2 matrix. In fact 
we can write 

H = [ H +  0 H- . (4) 

Since 

(5) 
-1 0 

H+. H- are given by 

P2 1 W'(X) 

P2 1 W" 

H+ = 2 + -W2(X) +- 
2 2 

H- = - + -W2(x)  - -. 
2 2  2 .  

The eigenvalue equation can then be written as 

Hp = Ep 

where. v, is a two-component vector given by 

.=[;"I 
From (8) the equations for (o+, 9- are found to be 

a%+ - + (2E+ - W2(x) - W ' ( X ) ) ~ + ( X )  = 0 
dx* 

and 

dzp- 
dx2 
- + (2E- - W%) + W ' ( X ) ) + ( X )  = 0. 

The Hamiltonians corresponding to (9) and (10). i.e. 

are isospectral. (Here W' = dw/dx.) 
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Now let us consider the Schrijdinger equation 

d*Y - + (V&) - E)Y = 0. 
dr2 

Here Vo(r) may include the angular momentum term l(l+ l )Jr2  and also theterm S*h(r) 
discussed by Schnizer and Leeb for this would make no difference to OUT argument. Let 
 or, r) be a solution of (1). If VOW, r )  is another solution of ( 1 )  then, according to 
Darboux's result, as formulated by Schnizer and Leeb, the function q-1 defined by 

where W(Y2, Yz) is the Wronskian given by 

dY2 dY1 
W(Y1, Y2) = Y,- - -Yz 

dr dr 

satisfies a Schrodmger equation with potential 

To see the connection with supersymmehy let 

&,(r) satisfies the SchrMinger equation 

where 

vo(r) - E = WO' + wh. (1% 

Hence J'o corresponds to the ground-state solution of a supersymmetric Hamiltonian with 
super potential WO. Now, 

Therefore, from (15) 

&(r) = vo(r) - 2w; = w,' - wl, (21) 

which is the superpartner of (19). Thus Darboux's theorem implies the well known property 
Of SUSYQM. If we apply Darboux's theorem again to (21) we will get back (19). However, if 
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we use a modified form of Darboux's theorem a series of new exactly solvable Hamiltonians 
can be generated. Let Vo(r), ql(r) be two independent solutions of (9) (eventually only one 
of them can be normalized). Take the solutions 70, V I  in the following form: 
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qd r )  = exp (/ wo(r)dr) (22) 

and 

V I  (r) = exp (/ WI 0) dr) (23) 

such that 

w;+ wb = w: + w;. 

To solve (23) we put 

w 1 0 )  = WOO) + W 
whence U satisfies the Riccati equation 

rr'+2uwo + U* = 0. 

Putting U = l/f, equation (26) can be written as 

f ' - Z f w o = I .  

Equation (27) is a first-order linear differential equation in f .  Its solution is given by 

f=exp(Z/ 'wO(t )~}S 'drexp{  - S ' Z w o ( t ) d t } + k e x p [ 2 / ' w O ( t ) d r } .  (28) 

Therefore 

1 exp{-2J'wo(r)dt} 
f k + r d r  exp(-Jr2wo(t)dt) 

U = - =  

where k is an integral constant. 
Now define, 

where p(r) is any function of r and is not necessarily h(r) even if one includes e2h(r) in 
the definition of V&). Also W(q0,ql)  is the Wronskian defined by 

and m is any real number. (m = 1/2 gives the form taken by Schnizer and Leeb [8].) Note 
that the Wronskian in (30) is trivial in the present case but we keep it in this form to show 
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the apparent similarity between our results and those of Schnizer and Leeb [SI. Now f i  can 
be written as 

Therefore 

Differentiating again we get, after some simplification, 

(34) 
kwip’ + m(m + l ) g R  - w] 

P P2 P 
+ w; -2w; + - 

where we have used the result 

w:+w;I= w:+w; = &(r) - E. (35) 

Hence f i  satisfies a Schrodinger equation with potential V,(r) given by 

for p ( r )  = 1 

(37) 

which gives a new Hamiltonian which is isospectral with the SUSY Hamiltonian with 
superpotential WO. (Note that UJ: - w; is different from U J ~  - w;.) If we apply the same 
procedure to the potential K (r) given in (36) and define 

2 ,  V,(r) = w l  - w 1  

where i j ,  i j ,  are independent solutions of the Schrodinger equation 

dZY - + ( K ( r ) - E ) Y = O  
drZ 

then satisfies a Schrodinger equation with potential Vz(r), given by 

if we take p ( r )  = 1, then 

v,(r) = w: + w; 
where wz satisfies the Riccati-like equation 

(39) 

(42) r 2 ,  w; - w, = w1 - w,. 
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Because of (42), IQ is isospectral with (19). If we write 

W z W  = W I D )  

then g(r) is given by 

(43) 

where K is an integration constant. In the following we give a simple example to show how 
one can explicitly obtain the isospectral Hamiltonians. Let us take WO = 2tanhr. p(r) = 1, 
then the corresponding potential is 

V(r) = -2sech'r. (45) 

This is isospectral with a Hamiltonian with potential 

v,(r) = W; - W; (46) 

where 

W I  =Ztanhr+u(r) 

= 2tanhr + exp{-2Jr w(r) dr) 
k+fexp{-2Sw(r)dr]dr 

3 sech4 r 
k'+tanhr(sech'r +2) 

= 2 tanh r + (k' = 3k). (47) 

If one takes a non-constant p(r) a different potential results. For example (p(r))" = I / r  
gives 

(48) 

where w(r) is given by (47). If we apply the same procedure to the potential (46), we get 
a Hamiltonian isospectral with (46) and with a superpotential wz given by 

2 
r Vl(r) = V&) - -WI - 2w; 

wz = WO + u(r) + g(r) (49) 

where WO + u(r)(= wl(r)) is given by (47) and 

where 

Zl(r) = cosh4r(k'+tanhr(sech2r +2))2 
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and 

Zz(r) = r ( % k R -  ;)+sinhZr(+k"+ l )+sinhr(&kR+$ 

fk'(cosh4rf$cosh2r) -tanhr+k" 

where k' and k" are integrating constants. 
Recently Dutra 1141 has found exact solutions of a class of potentials called conditionally 

exactly solvable potentials. Since these class of potentials can be put exactly in the 
supersymmetric form [15], our'formalism can also be applied to these classes of potentials. 
For example, if we take the superpotential to be 

we get one of the potentials found by Dutra 114,151 (the so-called conditionally exactly 
solvable potential), i.e. 

B 5/36 
v(r) = ar'fi + - - - 

r2fi rz (54) 

where A = a' and B = dZ + 2bd. If we apply the method of obtaining isospectral 
Hamiltonians described above then the Hamiltonian with a potential given by (54) is 
isospectral with a Hamiltonian with a potential 

dwi VI@) = V(r) - 2- dr  

where 

1/6 d &(r) 
wl(r)=ar1I3+-+-+- 

r r1j3 

and 

&(r) = ~ e 3 d 2 / 2 u  erf [ Sar'l3 + -d 2a + k 
3 1  

where k is an integrating constant and erf(z) is the error function [16] defined by 

2 2  
erf(z) = - / e-" dt, 

J r ; o  

(57) 

(58) 

(59) 

To conclude, a method to generate isospecfd supersymmetric Hamiltonians is given which 
is similar but inequivalent to Darboux's method. 
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